

• Quality • Reliability • Precision

Rubycon

technology

PRESENTATION MENU

Conductive Polymer Aluminum Solid Hybrid Capacitors

WBRID TECHNOLOGY

Rubycon

technology

CLICK COLOR TO ADVANCE PRESENTATION IN SLIDE SHOW MODE

Material Background

PEDOT = PRIMARY POLYMER

ARS2 FUNCTIONAL LIQUID= SECONDARY SUBSTANCE Polyethylene Glycol Solution

CREATING: Poly-Ion Complex

....Material Background

Poly-3,4-

ethylenedioxythiophene:polystyrenesulfonate (PEDOT:PSS) is a water-processable conducting polymer with promise for use in transparent flexible electrodes and thermoelectric devices, but its conductivity is not satisfactory. Its low conductivity is attributed to the formation of hydrophilic/insulating PSS outer layers encapsulating the conducting/hydrophobic pdoped PEDOT cores. Recently a significant conductivity enhancement has been achieved by adding ionic liquid (IL). It is believed that ion exchange between PEDOT:PSS and IL components helps PEDOT to decouple from PSS and to grow into large-scale conducting domains, but the exact mechanism is still under debate.

Here we show through free energy calculations using density functional theory on a minimal model that the most efficient IL pairs are the least tightly bound ones with the lowest binding energies, which would lead to the most efficient ion exchange with PEDOT:PSS. This spontaneous ion exchange followed by nanophase segregation between PEDOT and PSS, with formation of a π -stacked PEDOT aggregate decorated by IL anions, is also supported by molecular dynamics performed on larger PEDOT:PSS models in solution. We also show that the most efficient IL anions would sustain the highest amount of charge carriers uniformly distributed along the PEDOT backbone to further enhance the conductivity, providing that they remain in the PEDOT domain after the ion exchange. Hence, our design principle is that the high-performance IL should induce not only an efficient ion exchange with PEDOT:PSS to improve the PEDOT morphology (to increase mobility) but also a uniform high-level *p*-doping of PEDOT (to enhance intrinsic conductivity). Based on this principle, a promising (electron-withdrawing, but bulky, soft, and hydrophobic) new IL pair is proposed.

• Quality • Reliability • Precision

SLIDE NAVIGATION

CAPACITORS SLIDE NAVIGATION

RUBYCON HYBRID VS. WET TYPE ELECTROLYTIC

COMPARISON

TECHNOLOGY

CONFIDENTIAI

unless approved in advance www.rubycon.com SURFACE MOUNT

RADIAL

	Hybrid Polymer	. /	Wet Type Ecap			Hybrid Polymer		Wet Type Ecap
PARAIVIETER	35PFV270M10X10.5	+/-	35TGV220M10X10.5		PARAMETER	35PZH330M10X9	+/-	25HRX5100M18X25
Temperature Range	-55°C ~ +125°C	+	-40°C ~ +125°C		Temperature Range	-55°C ~ +125°C	+	-40°C ~ +125°C
Size (Φ DXL)	10X10.5	/	10X10.5		Size (Φ DXL)	10X9	+	18X25
Rated Voltage	35V	/	35V		Volume	0.71 cm ³	+	6.36cm ³
Capacitance	270uF	+	220uF		Weight	1.3 grams	+	10 grams
Leakage Current	94.5uA	-	77uA		Ripple Current (100kHz)	3600mA	/	3620mA
Ripple Current	(0.0107)		(0.0107)		ESR(100kHz 20°C)	20mΩ	+	32mΩ
(100kHz)	2000mA	+	+ 550mA + 120mΩ		Lifetime	4000 Hrs	+	3000 Hrs
ESR(100kHz 20°C)	$20m\Omega$ (10.9 Measured)	+			(125°C)	4000 1113		5000 1113
Lifetime (125°C)	4000 Hrs	+	3000 Hrs	1				

• Quality • Reliability • Precision

Hybrid type achieve higher capacitance and lower leakage current in comparison with conventional solid polymer technologies.

ESR 1/6 and Ripple current 4 times are achieved in comparison with Non-solid type electrolytic.

BRID TECHNOLOGY Conductive Polymer Aluminum Solid Hybrid Capacitors

Rubycon

technology

Electrolyte Based

con

CAPACITORS SLIDE NAVIGATION

RUBYCON VS. OTHERS- CHARACTERISTICS VS LIFE

Rubycon

technology

RUBYCON HYBRID vs ELECTROYTE- CHARACTERISTICS VS TEMP

25v 330uf 10x10 Shown

Quality • Reliability • Precision

ESR [Ω] at 100kHz

www.rubycon.com

Rubycon

technology

Rubycon

technology

RUBYCON HYBRID ESR DISTRIBUTION @ 20°C, 100KHz

25PFV330M10X10.5

• Quality • Reliability • Precision

TEST ITEM

CATALOG SPECIFICATION ESR: 20mΩ @ 20°C, 100KHz RIPPLE CURRENT: 2Arms/125°C, 100KHz

CAPACITORS SLIDE NAVIGATION

RUBYCON HYBRID F BRID TECHNOLOGY **Humidity Endurance Testing** Conductive Polymer Aluminum Solid Hybrid Capacitors RH 85°C,85% RH Rated Voltage Applied TESTING (After reflow soldering X2) AC[%]/120Hz ESR/10kHz 50 ESR[m Q]/10kHz -5 40 ∆ C[%]/120Hz -10 30 -1520 -20 -25 10 -30 Û 500 1000 1500 2000 2500 0 500 1500 2000 2500 1000 Û 時間 [hours] 時間 [hours] ESR/100kHz 6 50 tan δ 5 2 4 tan ô 2 1 0 0 500 1000 1500 2000 2500 500 1500 0 0 1000 2000 2500 時間 [hours] 時間 [hours] 85 Rup CAPACITORS RH 2000 Hour 85 Testing °C SLIDE NAVIGATION CONFIDENTIAL • Quality • Reliability • Precision unless approved in advance www.rubycon.com

Rubycon

technology

Rubycon

LEAKAGE CURRENT TEST

35V, 270µF, 10x10 Size

REFLOW SOLDERING

Time (sec)

Peak Temp (T)	Τ1	The time of 200°C or more (t)	The time of 230°C or more (t1)
260"C	230°C	60 sec (max)	40 sec (max)
250°C	230°C	60 sec (max)	40 sec (max)

2X Reflow Testing at 260°C

before			
Cap. [μF]	Tanδ [%]	L.C. [μA]	E.S.R. [μΩ]
330	3.0	7.3	10.5
after			*
∆C [%]	Tanō [%]	L.C. [μA]	E.S.R. [μΩ]
-4.2	3.1	30.6	10.2

SPECIFICATION

-Cap :+/-10% of initial value

-Tan δ : Not more than 14%

-L.C. : 0.01CV/2min. (Max.)

-E.S.R.: Not more than 20mW

SINGLE REFLOW

DUAL REFLOW

DENTIAL y-Not for Distribution, rowed in advance bycon.com

r	
LOAD DUMP	

Road vehicles — Environmental conditions and testing for electrical and electronic equipment

In general, 35v/63v capacitors are typically used to satisfy 12/24v battery load dump conditions. With our hybrid polymer caps 25/50v capacitors can be employed instead which will increase options for capacitance and size reduction.

24v Battery Systems

ISO 7637-2 Test pulse 5b (ISO 16750-2 load dump Test B) Surge voltage (Us) : 65V Duration of pulse: 350ms Test cycle: 5 pulses at interval of 1min. Temperature : Room temp. (25°C)

12v Battery Systems

ISO16750-2 Test B DUT 20°C below max rated temp Supply Voltage Max for nominal 12V system = 16VDC Apply 18VDC for 60 Min at above temp

Use 25v Hybrid

Use 50v

Hybrid

Advantage?

10x12.5 Size From 390µF To 560µF Increase in Capacitance

270µF From 10x10.5 to 8x10.5 Decrease in Size

Test Results:

CONFIDENTIAL

unless approved in advance www.rubycon.com

Test temperature: Room temp.

Reference standard: ISO 16750-2: 2010 Load dump Test B

LOAD DUMP

Test item:

• Quality • Reliability • Precision

25 PFV 330 M 10X10.5

Test condition:

Parameter	12V system
U _A	14V
Us*	35V
t _d	400ms
t _r	< 10ms
Test cycles	5 pulses at intervals of 1min

unless approved in advance www.rubycon.com

REVERSE VOLTAGE TEST 1

Reverse Voltage -1VDC is applied at 125°C for 125 Hours, Then normal rated voltage is applied for 125 Hours 25V, 330µF, 10x10 Tested

25

권 20

¥00 15

0

50

Reverse (-1V) DC load (25V)

LEAKAGE CURRENT

CAPACITANCE

50

5.0

2.5

0.0 È

-5.0

8-2.5

1201

Reverse Voltage -14VDC is applied at 25°C for 6 Minutes 25V, 330µF, 10x10 Tested **TEST RESULT:**

Before			
Cap. [μF]	Tanð [%]	L.C. [μΑ]	E.S.R. [mΩ]
297	2.7	2.2	11.9
After			
∆C [%]	Tanô [%]	L.C. [μΑ]	E.S.R. [mΩ]
-5.5	2.7	4.6	10.9

CONFIDENTIAL

unless approved in advance www.rubycon.com

• Quality • Reliability • Precision

ESR

150

200

100

Robust Against Reverse Voltage

250

300

VIBRATION TESTING - 10X10 SIZE

Size (D x L)	Normal	Vibration proof
6.3x6.1 6.3x8	30G MAX	
8X10.5	20G MAX	30G MAX
10X10.5	20G MAX	30G MAX

Sine wave vibration

Quality
 Reliability
 Precision

Frequency	10 ⇔ 2000Hz			
Cycle	15min			
Direction	X-Y-Z			
Duration	Each 4 hours/axis			

Lifetime Table for 25PFV330MBPH10X10.5

	Irms @100kHz [A]									
T _b [℃]	0	1	2	3	4	5	6	7	8	9
30	3,030,909	3,030,909	3,030,909	3,030,909	3,030,909	3,030,909	3,030,909	3,030,909	2,118,364	1,602,196
40	3,030,909	2,981,525	2,838,149	2,614,347	2,330,356	2,010,077	1,677,776	1,355,148	1,059,182	801,098
50	1,515,454	1,490,763	1,419,075	1,307,173	1,165,178	1,005,038	838,888	677,574	529,591	400,549
60	757,727	745,381	709,537	653 <i>,</i> 587	582,589	502,519	419,444	338,787	264,795	200,274
70	378,864	372,691	354,769	326,793	291,295	251,260	209,722	169,394	132,398	100,137
80	189,432	186,345	177,384	163,397	145,647	125,630	104,861	84,697	66,199	50,069
90	94,716	93,173	88,692	81,698	72,824	62 <i>,</i> 815	52,431	42,348	33,099	25,034
95	66,974	65,883	62,715	57,769	51,494	44,417	37,074	29,945	23,405	17,702
100	47,358	46,586	44,346	40,849	36,412	31,407	26,215	21,174	16,550	12,517
105	33,487	32,942	31,357	28,885	25,747	22,208	18,537	14,972	11,702	8,851
110	23,679	23,293	22,173	20,425	18,206	15,704	13,108	10,587	8,275	6,259
115	16,744	16,471	15,679	14,442	12,874	11,104	9,268	7,486	5,851	4,425
120	11,839	11,647	11,087	10,212	9,103	7,852	6,554	5,294	4,137	3,129
125	8,372	8,235	7,839	7,221	6,437	5,552	4,634	3,743	2,926	2,213
130	5,920	5,823	5,543	5,106	4,551	3,926	3,277	2,647	2,069	1,565
135	4,186	4,118	3,920	3,611	3,218	2,776	2,317	1,872	1,463	1,106
140	2,960	2,912	2,772	2,553	2,276	1,963	1,638	1,323	1,034	782
145	2,093	2,059	1,960	1,805	1,609	1,388	You can univ	ersally use the	above lifetime	e table,
150	1,480	1,456	1,386	0	0	0	which is independent of ECU design.			

• Quality • Reliability • Precision

 $\begin{aligned} |T_c - T_l| &\leq 5 \implies T_b = Max(T_c, T_l) \\ |T_c - T_l| &> 5 \implies T_b = 0.65T_c + 0.35T_l \end{aligned}$

CONFIDENTIAL

unless approved in advance www.rubycon.com

Rubycon

www.rubycon.com

Measuring the effect on temperature for capacitance & ESR

Item Tested: 25 PFV 330 M 10X10.5

Yes \rightarrow Capacitance component No \rightarrow ESR component

So, end of life characteristic will be based upon the change in capacitance.

Relationship between capacitance and weight change

Relationship between ΔC and ΔW

Item Tested: 25 PFV 330 M 10X10.5

Rubycon

CONFIDENTIAL

unless approved in advance
www.rubycon.com

LIFE CALCULATION

SLIDE NAVIGATION

/ww.rubvcon.com

LIFE CALCULATION

Rubycon

LIFE CALCULATION

Arrhenius equation

 $K = Ae^{\frac{-E}{RT}}$ $lnK = \left(\frac{-E}{R}\right)\frac{1}{T} + lnA \cdot \cdot \cdot 1$ From formula (1)&(2)

$$\left(\frac{-E}{R}\right) = -12625$$

Activation energy Approximation formula from Arrhenius plot

$$ln\left(\frac{\Delta W}{\Delta t}\right) = -12625\frac{1}{T_{abs}} + 25.926\cdots (2)$$

 $E = 12625 \cdot R$ $= 12625 \times 8.31$ - 104.9 [kJ/mol]

CONFIDEN www.rubycon.com

LIFE CALCULATION

• Quality • Reliability • Precision

Life Expectancy based upon life @ 150°C

Temperature	150°C	135°C	125°C	105°C
Experimental value	1.0	2.3	4.8	33.9
Law of 10°C 2.2 times	1.0	3.3	7.2	34.7
Arrhenius' Law	1.0	3.0	6.5	34.9
Law of 10°C 2.0 times	1.0	2.8	5.7	22.6

Life Expectancy based upon life @ 125°C

Temperature	150°C	135°C	125°C	105°C
Experimental value	0.18	0.43	1.0	6.2
Law of 10°C 2.2 times	0.14	0.45	1.0	4.8
Arrhenius' Law	0.15	0.46	1.0	5.4
Law of 10°C 2.0 times	0.18	0.50	1.0	4.0

Arrhenius' Formula

$$L = L_b \times 2^{\frac{T_{\max} + \Delta T_o - T_c}{10}}$$

L: Life expectancy under operated condition L_b: Lifetime at basis temperature T_{max} : Category upper temperature ΔT_o : Heat rise by rated ripple current applied T_c : surface temperature

Result: Doubling of life every 10 degree drop Standard Arrhenius' calculation can be used.

CONFIDENTIAL For Recipient Only – Not for Distribution, unless approved in advance www.rubycon.com

Conductive Polymer Aluminum Solid Hybrid Capacitors

Comparison of liquid loss of Rubycon hybrid polymer vs other hybrid technologies

Use Caution as doubling of life with 10 degree drop might not be possible with other hybrids.

THERMAL MODELING Step 1: Measurement of Temperature With ripple current applied

Actual measurement value

• Quality • Reliability • Precision

unit:°C

TEST ITEM

25PFV330M10X10.5

CATALOG SPECIFICATION ESR: 20m Ω @ 20°C, 100KHz RIPPLE CURRENT: 2Arms/125°C, 100KHz

	Ta	Tj	T _c	T _b
4A	84.9	99.2	97.6	93.2
6A	85.0	116.5	112.9	103.0
8A	84.8	143.1	136.1	117.9

Step 2:

Thermal

Resistance

TEST ITEM

ESR: 20mΩ @ 20°C, 100KHz

vww.rubvcon.com

CATALOG SPECIFICATION

25PFV330M10X10.5

RIPPLE CURRENT: 2Arms/125°C, 100KHz

Via Radiation

THERMAL MODELING

Basic formula (Stefan-Boltzmann law)

$$Q_{rad} = \sigma \epsilon A (T_c^4 - T_a^4)$$

$$R_{rad} = \frac{T_c - T_a}{Q_{rad}}$$

R_{rad}: Thermal resistance by radiation [K/W] T_c: Surface temperature of capacitor (abs [K])

T_a: Ambient temperature of capacitor (abs [K])

Q_{rad}: Thermal radiation from capacitor [W]

 σ : thermal emissivity

 ϵ : Stefan-Boltzmann constant (5.67x10⁻⁸[W/m²•K⁴]) A: Thermal radiation area [m²]

σ	Thermal emissivity of plastic material	0.95
3	Stefan-Boltzmann constant	5.67x10 ⁻⁸ W/m ² •K ⁴
А	Surface area of case	0.000393 m ²
T _c	Actual measurement value (abs 273+97.6)	370.6 K
Ta	Actual measurement value (abs 273+84.9)	357.9 K

$$\begin{split} Q_{rad} &= 0.95 \cdot 5.67 \times 10^{-8} \cdot 0.000393(370.6^4 - 357.9^4) \\ &= 0.0519 \; [\text{W}] \end{split}$$

$$R_{rad} = \frac{370.6 - 357.9}{0.0519} = 245 \left[\frac{K}{W} \right]$$

Conductive Polymer Aluminum Solid Hybrid Capacitors

THERMAL MODELING Step 3: Thermal Resistance via Convection

• Quality • Reliability • Precision

 R_{con} : Thermal resistance by convection [K/W] ΔT : Temperature difference between T_c and T_a [K] Q_{con} : Thermal radiation from capacitor [W] α : Heat transfer coefficient [W/m² · K] C: Coefficient by shape

- A: Surface area [m²]
- L : Characteristic length [m]

Q _{con} :	$= A \cdot \alpha \cdot \Delta T$	$\alpha = 2.51 \cdot C \cdot \left(\frac{\Delta T}{L}\right)$
Q _{con} : R _{con} :	$= A \cdot 2.51 \cdot C$ $= \frac{\Delta T}{\Delta T}$	$\cdot \left(\frac{1}{L}\right)^{0.25} \cdot \Delta T^{1.25}$
con	Q _{con} Side area	Top area
А	0.000311 m ²	0.000082 m*
A C	0.000311 m ² 0.56	0.000082 m ²
A C L	0.000311 m ² 0.56 0.0097 m	0.000082 m* 0.52 0.0090 m
A C L AT	0.000311 m ² 0.56 0.0097 m 12.7 K	0.000082 m ² 0.52 0.0090 m 12.7K
Α C L ΔT Q _{con}	0.000311 m ² 0.56 0.0097 m 12.7 K 0.0334 W	0.000082 m* 0.52 0.0090 m 12.7K 0.0083 W

THERMAL MODELING Step 4: Thermal Resistance Element to Case

BRID TECHNOLOGY

 $R_{ec} = \frac{T_j - T_c}{Q_{rad} + Q_{con}}$ $R_{ec} = \frac{T_j - T_c}{Q_{rad} + Q_{con}}$

TEST ITEM 25PFV330M10X10.5

Rubycon

technology

CATALOG SPECIFICATION ESR: $20m\Omega$ @ $20\circ$ C, 100KHz RIPPLE CURRENT: 2Arms/125°C, 100KHz

R

		Q _{rad} : Thermal radiation from capacitor [W]
T _j Tc	99.2°C 97.6°C	Q _{con} : Thermal convection from capacitor [W]
Q _{rad} Q _{con}	0.0519 W 0.0417 W	
_{ec} = 7	99.2 - 97.6	17.1 [K/W]

• Quality • Reliability • Precision

CONFIDENTIAL For Recipient Only – Not for Distribution, unless opproved in advance www.rubycon.com

Conductive Polymer Aluminum Solid Hybrid Capacitors

Step 5: Theoretical Calculation Of lead wire resistance

TEST ITEM 25PFV330M10X10.5

CATALOG SPECIFICATION ESR: 20mΩ @ 20°C, 100KHz RIPPLE CURRENT: 2Arms/125°C, 100KHz

vww.rubvcon.com

 $\begin{array}{l} \mbox{Thermal conductivity} \\ \lambda_{AI}: 2.35 \ [W/cm \cdot K] \\ \lambda_{CP}: 1.0468 \ [W/cm \cdot K] \end{array}$

• Quality • Reliability • Precision

Thermal model of lead wire

THERMAL MODELING

Step 5: Continued Theoretical Calculation Of lead wire

• Quality • Reliability • Precision

resistance

Rubycon

technology

TEST ITEM

25PFV330M10X10.5

CATALOG SPECIFICATION ESR: 20mΩ @ 20°C, 100KHz RIPPLE CURRENT: 2Arms/125°C, 100KHz

	Breakdow	vn	
Al tab		W1.5 X D0.3 X H0.4 [mm]	$R_{Altab} = \frac{0.04}{2.35 \cdot 0.15 \cdot 0.03} = 3.78 [K/W]$
Al wire1	\square	φ0.7 X 0.5 [mm]	$R_{Alwire1} = \frac{0.05}{2.35 \cdot \pi \cdot 0.035^2} = 5.53 [K/W]$
Al wire2		φ1.2 X 1.5 [mm]	$R_{Al wire2} = \frac{0.15}{2.35 \cdot \pi \cdot 0.06^2} = 5.64 \ [K/W]$
Welding (CP wire)	\bigtriangledown	φ0.6 X 0.7 [mm]	$R_{Weld} = \frac{0.07}{1.0468 \cdot \pi \cdot 0.03^2} = 23.65[K/W]$
CP wire		φ0.6 X (0.8+0.3)[mm]	$R_{CPwire} = \frac{0.11}{1.0468 \cdot \pi \cdot 0.03^2} = 37.17 K/W]$
			Lead wire X 2

 $R_{lead} = 37.9[K/W]$

THERMAL MODELING Step 6: Thermal Energy Flow Via lead terminal

25PFV330M10X10.5

CATALOG SPECIFICATION ESR: 20m Ω @ 20°C, 100KHz RIPPLE CURRENT: 2Arms/125°C, 100KHz

$$Q_{lead} = \frac{99.2 - 93.2}{37.9} = 0.158 \, [W]$$

THERMAL MODELING

Step 7: Compare Actual vs Theoretical for Q -> Calculated vs Actual from ESR and I ripple

T _a	Case T _c PCB T _b R _{lead}	$\begin{array}{c} Q_{rad} + Q_{con} \\ R_{e} \\ \hline \\ R_{e} \\ \hline \\ Terminal \\ T_{t} \\ R_{lea} \end{array}$	\mathbf{V}_{di} Element T_{j} Joule Heat $Q = I^2 \text{ ESR}$
Experiment	ally derived Q	Q derived	from ESR and I _{ripple}
Qlead	0.158 W		
Q _{rad}	0.052 W	ESR _{estimated}	14.7m Ω/120Hz,99°C
Q _{con}	0.042 W	Iripple	4.0Arms/100kHz
Q total	0.252 W	Q total	0.235 W

TEST ITEM

25PFV330M10X10.5

ESR: $20m\Omega$ @ $20\circ$ C, 100KHz RIPPLE CURRENT: $2Arms/125\circ$ C, 100KHz

Unit °C

93.2

103.0

117.9

8A

209

215

14.5

1.15

1.06

CONFIDENTIAL unless approved in advance www.rubycon.com

THERMAL CAPACITANCE

6 N A 3 3 0 E	2

CONFIDENTIAL

unless approved in advance www.rubycon.com

544		
330 EZF	7	

SMD 10X10.5	: 1.88 J/K (Ce: 0.88J/K , Cc: 0.31J/K)
SMD 10X12.5	: 2.25J/K (Ce: 1.14J/K , Cc: 0.35J/K)
THT 10X9	: 1.69 J/K (Ce: 0.88J/K , Cc: 0.31J/K)
THT 10X11	: 2.06J/K (Ce: 1.14J/K , Cc: 0.35J/K)
THT 10X20	: 3.50J/K (Ce: 2.33J/K , Cc: 0.58J/K)

PRODUCT MASTER (Radial Type) 25-63v Options

Click for Data Sheet

1	Radial	Temp	`
	PZE SERIES	105°C	
	PZF SERIES	125°C	
	PZJ SERIES	125°C	
	PZH SERIES	135°C	
1	~		1

¹ Sample/Release Schedule may be adjusted without notice.

[V]	Series	[µF]	φD×L	[mΩ]	[mA]@	Туре	Max	AECQ200	Mass
			[mm]	100KHz	Max		Ambient	Samples	Production
				20∘C	Ambient		۰C		
25	PZE	220	8 x 9	27	2300	RADIAL	105	Available	Available
25	PZF	220	8 x 9	27	1600	RADIAL	125	Available	Available
25	PZJ	270	8 x 9	25	1920	RADIAL	125	Available	Available
25	PZE	330	10 x 9	20	2500	RADIAL	105	Available	Available
25	PZF	330	10 x 9	20	2000	RADIAL	125	Available	Available
25	PZF	470	10 x 11	14	2600	RADIAL	125	Available	Dec 2019
25	PZJ	470	10 x 9	20	2800	RADIAL	125	Available	Available
25	PZJ	560	10 x 11	14	3200	RADIAL	125	Available	Dec 2019
25	PZH	820	10 x 20	12	3000	RADIAL	135	Available	Dec 2019
25	PZF	820	10 x 20	12	3000	RADIAL	125	Available	Dec 2019
35	PZE	150	8 x 9	27	2300	RADIAL	105	Available	Available
35	PZF	150	8 x 9	27	1600	RADIAL	125	Available	Available
35	PZJ	180	8 x 9	25	1920	RADIAL	125	Available	Available
35	PZE	270	10 x 9	20	2500	RADIAL	105	Available	Available
35	PZF	270	10 x 9	20	2000	RADIAL	125	Available	Available
35	PZF	330	10 x 11	14	2600	RADIAL	125	Available	Dec 2019
35	PZJ	330	10 x 9	20	2800	RADIAL	125	Available	Available
35	PZJ	390	10 x 11	14	3200	RADIAL	125	Available	Dec 2019
35	PZH	680	10 x 20	12	3000	RADIAL	135	Available	Dec 2019
35	PZF	680	10 x 20	12	3000	RADIAL	125	Available	Dec 2019
50	PZE	68	8 x 9	30	1800	RADIAL	105	Available	Available
50	PZF	68	8 x 9	30	1250	RADIAL	125	Available	Available
50	PZF	100	10 x 9	28	1600	RADIAL	125	Available	Available
50	PZE	100	10 x 9	28	2000	RADIAL	105	Available	Available
50	PZF	150	10 x 11	22	2000	RADIAL	125	Available	Dec 2019
50	PZH	220	10 x 20	16	2500	RADIAL	135	Available	Dec 2019
50	PZF	220	10 x 20	16	2500	RADIAL	125	Available	Dec 2019
63	PZE	33	8 x 9	40	1700	RADIAL	105	Available	Available
63	PZF	33	8 x 9	40	1100	RADIAL	125	Available	Available
63	PZE	56	10 x 9	30	1800	RADIAL	105	Available	Available
63	PZF	56	10 x 9	30	1400	RADIAL	125	Available	Available
63	PZF	68	10 x 11	24	1800	RADIAL	125	Available	Dec 2019
63	PZH	150	10 x 20	18	2200	RADIAL	135	Available	Dec 2019

Available

Dec 2019

CONFIDENTIAL For Recipient Only – Not for Distribution, unless approved in advance WWW.rubycon.com

Not for Distribution, ein advance vcon.com

63 PZF 150 10 x 20

18

2200 RADIAL

125

INTERNAL ONLY

INTERNAL ONLY

CONFIDENTIAL unless approved in advance www.rubycon.com

be adjusted without notice.

PZ-CAP™

BRID TECHNOLOGY

Conductive Pelymer Alaminum Solid Hybrid Capacitars

PRODUCT MASTER

(SMD Options)

50-80v Next Page

6 N A 3 3 0 E H V

Click for Data Sheet

SMD **PEV SERIES**

PFV SERIES

PJV SERIES

PHV SERIES

PLV SERIES

Temp

105°C 125°C

125°C 135°C

150°C

25-35v Options,

¹ Sample/Release Schedule may **Quality** • **Reliability** • **Precision**

			[uuu]	TOOKHZ	IVIAX		Ampient	samples	Prou.
				20∘C	Ambient		۰C		
25	PEV	56	6.3 x 6.1	50	1300	SMD	105	Available	Available
25	PFV	56	6.3 x 6.1	50	900	SMD	125	Available	Available
25	PHV	56	6.3 x 6.1	50	900	SMD	135	Available	Available
25	PJV	68	6.3 x 6.1	50	1080	SMD	125	Available	Jan-19
25	PEV	100	6.3 x 8	30	2000	SMD	105	Available	Available
25	PFV	100	6.3 x 8	30	1400	SMD	125	Available	Available
25	PHV	100	6.3 x 8	30	1400	SMD	135	Available	Available
25	PLV	150	8 x 10.5	27	1400	SMD	150	Available	Jan-19
25	PJV	150	6.3 x 8	30	1680	SMD	125	Available	Available
25	PEV	220	8 x 10.5	27	2300	SMD	105	Available	Available
25	PFV	220	8 x 10.5	27	1600	SMD	125	Available	Available
25	PHV	220	8 x 10.5	22	1600	SMD	135	Available	Available
25	PJV	270	8 x 10.5	25	1920	SMD	125	Available	Available
25	PLV	270	10 x 10.5	20	1800	SMD	150	Available	Jan-19
25	PEV	330	10 x 10.5	20	2500	SMD	105	Available	Available
25	PFV	330	10 x 10.5	20	2000	SMD	125	Available	Available
25	PHV	330	10 x 10.5	20	2000	SMD	135	Available	Available
25	PJV	470	10 x 10.5	20	2800	SMD	125	Available	Available
25	PFV	470	10 x 12.5	14	2600	SMD	125	Available	Dec 2019
25	PHV	470	10 x 12.5	14	4100	SMD	135	Available	Dec 2019
25	PJV	560	10 x 12.5	14	3200	SMD	125	Available	Dec 2019
35	PEV	47	6.3 x 6.1	60	1300	SMD	105	Available	Available
35	PFV	47	6.3 x 6.1	60	900	SMD	125	Available	Available
35	PHV	47	6.3 x 6.1	60	900	SMD	135	Available	Available
35	PJV	56	6.3 x 6.1	50	1080	SMD	125	Available	Jan-19
35	PEV	68	6.3 x 8	35	2000	SMD	105	Available	Available
35	PFV	68	6.3 x 8	35	1400	SMD	125	Available	Available
35	PHV	68	6.3 x 8	35	1400	SMD	135	Available	Available
35	PLV	100	8 x 10.5	27	1400	SMD	150	Available	Jan-19
35	PJV	100	6.3 x 8	30	1680	SMD	125	Available	Jan-19
35	PEV	150	8 x 10.5	27	2300	SMD	105	Available	Available
35	PFV	150	8 x 10.5	27	1600	SMD	125	Available	Available
35	PHV	150	8 x 10.5	22	1600	SMD	135	Available	Available
35	PLV	150	10 x 10.5	20	1800	SMD	150	Available	Jan-19
35	PJV	180	8 x 10.5	25	1920	SMD	125	Available	Available
35	PEV	270	10 x 10.5	20	2500	SMD	105	Available	Available
35	PFV	270	10 x 10.5	20	2000	SMD	125	Available	Available
35	PHV	270	10 x 10.5	20	2000	SMD	135	Available	Available
35	PJV	330	10 x 10.5	20	2800	SMD	125	Available	Available
35	PFV	330	10 x 12.5	14	2600	SMD	125	Available	Dec 2019
35	PHV	330	10 x 12.5	14	2300	SMD	135	Available	Dec 2019
35	PJV	390	10 x 12.5	14	3200	SMD	125	Available	Dec 2019

[mA]@ Type

φD×L

Series [µF]

[mΩ]

Max AECQ200

Mass

BRID TECHNOLOGY

PRODUCT MASTER (SMD Options) 50-80v

Click for Data Sheet

1	Temp	SMD
	105°C	PEV SERIES
	125°C	PFV SERIES
	125°C	PJV SERIES
	135°C	PHV SERIES
	150°C	PLV SERIES
	·	

¹ Sample/Release Schedule may be adjusted without notice.

Series [µF] φD×L [mΩ] [mA]@Type AECQ200 [V] Max Mass 100KHz Ambient Samples [mm] Max Prod. ۰C 20°C Ambient Available Available PEV 22 6.3 x 6.1 80 1100 SMD 105 50 PFV 22 6.3 x 6.1 80 750 SMD 125 Available Available 50 50 PEV 33 6.3 x 8 40 1600 SMD 105 Available Available 125 Available Available 50 PFV 33 6.3 x 8 40 1100 SMD 50 PLV 56 8 x 10.5 35 1000 SMD 150 Sep-18 Jan-19 Available Available 50 PEV 68 8 x 10.5 30 1800 SMD 105 50 68 8 x 10.5 30 1250 SMD 125 Available Available PFV PHV 68 8 x 10.5 30 1250 SMD 135 Available Available 50 50 PEV 100 10 x 10.5 28 2000 SMD 105 Available Available 50 Available Available PFV 100 10 x 10.5 28 1600 SMD 125 50 PLV 100 10 x 10.5 28 1300 SMD 150 Sep-18 Jan-19 50 PHV 100 10 x 10.5 28 1600 SMD 135 Available Available 22 Available Dec 2019 50 150 10 x 12.5 2000 SMD 125 PFV PEV 10 6.3 x 6.1 120 1000 SMD 105 Available Available 63 PFV 10 6.3 x 6.1 120 700 SMD 125 Available Available 63 63 PEV 22 6.3 x 8 80 1500 SMD 105 Available Available 22 63 PFV 6.3 x 8 80 900 SMD 125 Available Available Available Available PEV 33 8 x 10.5 40 1700 SMD 105 63 125 Available Available 63 PFV 33 8 x 10.5 40 1100 SMD 33 8 x 10.5 40 SMD 150 63 PLV 900 Sep-18 Jan-19 PHV 33 8 x 10.5 40 1100 SMD 135 Available Available 63 63 PJV 47 8 x 10.5 35 1550 SMD 125 Available Available 63 PEV 56 10 x 10.5 30 1800 SMD 105 Available Available 63 PFV 56 10 x 10.5 30 1400 SMD 125 Available Available 63 PLV 56 10 x 10.5 30 1100 SMD 150 Sep-18 Jan-19 63 PHV 56 10 x 10.5 30 SMD 135 Available Available 1400 Available Dec 2019 63 PFV 68 10 x 12.5 24 1800 SMD 125 63 PJV 82 10 x 10.5 28 2300 SMD 125 Available Available 63 PJV 100 10 x 10.5 22 3000 SMD 125 Available Available 22 45 SMD 125 Available 80 PFV 8 x 10.5 1100 Jan-19 80 PFV 39 10 x 10.5 35 1200 SMD 125 Available Jan-19

CONFIDENTIAL For Recipient Only – Not for Distribution, unless approved in advance WWW.rubycon.com

Quality • Reliability • Precision

INTERNAL ONLY

CONFIDENTIAL For Recipient Only – Not for Distribution, unless approved in advance www.rubycon.com

		NTERNAL ONLY					
	Conductive Polymer Aluminum Solid Hybrid Capacitor	pz	Ser	ies 12	5°C	Pz-c	
hnology	Teaturing:	AEC-Q200	Rated Voltage [V]	Capacitance [µF]	Size (mm) D x L	E. S.R.[mΩ] /100kHz, 20°C	Rated Ripple Current [mA] /100kHz,125°C
	AUTOMOTIVE GRADE 25-63 VDC		25	220	8 x 9	27	1600
人用了	HIGH VIBRATION			330	10 x 9	20	2000
	CONG LIFE PC	DWER		470 ¹	10x11	14	2600
	LOAD DUMP			820 ²	10x20	12	3000
	DOUBLE RIPPLE OPERATION ¹ 20-40 mΩ	DUSTRIAL	35	150	8 x 9	27	1600
	TEMPERATURE RANGE -55°C to +125°C			270	10 x 9	20	2000
	LIFE (ENDURANCE)- HRS 4,000 @ 125∘C	ARS II™		330 ¹	10x11	14	2600
	BIASED HUMIDITY- HRS 2,000 @ 85/85 (%RH/•0	technology C)		680²	10x20	12	3000
$\gamma \sim \gamma \sim \gamma$	D		50	68	8 x 9	30	1250
	${\sf K}$ ubycon's PZF series conductive polymer (hybrid) capaci	tors are		100	10 x 9	28	1600
	designed for applications requiring ultra miniaturization wi temperature/performance endurance.	h high:		150 ¹	10x11	22	2000
	Designed to operate in extreme environments with exceller	t low		220 ²	10x20	16	2500
	Double Ripple Current operational testing can be provided	ipon request. ¹	63	33	8 x 9	40	1100
				56	10 x 9	30	1400
	Under Development (Tentat	ve Spec)		68 ¹	10x11	24	1800
	CAPACITORS See Product Master			150 ²	10x20	18	2200
A REAL PROPERTY AND A REAL					-		

CONFIDENTIAL

cipient Only – Not for Distribution, unless approved in advance www.rubycon.com

R

teo

9

CLICK FOR PRODUCT MASTER

Quality • Reliability • Precision

	INTERNAL	ONLY					
BR	Conductive Polymer Aluminum Solid Hybrid Capacitors	AEC-Q200					
ARS II™		3	NEW	TEMPERATU	JRE RANGE	-55∘C t	o +125∘C
mology	JZ Series J Series	2	VE VV	LIFE (ENDUR/	ANCE)- HRS	4,000	@ 125∘C
			2.2.4	BIASED HUN	1IDITY- HRS	2,000 @ 85	5/85 (%RH/∘C)
	P71 DIV SMD	Rated Voltage [V]	Capacitance [µF]	Size (mm) D x L PJV	Size (mm) D x L PZJ	E. S.R. [mΩ] 100kHz 20°C	Rated RC [mA] 100kHz 125°C
	RADIAI	25	68 ¹	6.3x6.1	-	50	1080
			150 ¹	6.3x8	-	30	1680
	C pplications:		270	8x10.5	8X9	25	1920
	25-35 VDC		470	10x10.5	10X9	20	2800
			560²	10x12.5	10X11	14	3200
	8-10 mm Dia	35	56 ¹	6.3x6.1	-	50	1080
00	14-25 mΩ		100 ¹	6.3x8	-	30	1680
			180	8x10.5	8X9	25	1920
3			330	10x10.5	10X9	20	2800
			390 ²	10X12.5	10X11	14	3200
		63	47 ³	8x10.5		35	1550
			82 ³	10x10.5		28	2300
	45+		100 ³	10x12.5		22	3000
協理	CAPACITORS	CLICK FOR PRO	DDUCT MASTER				

Ru

tecl

Quality
 Reliability
 Precision

SOP/Sample Schedule See Product Master

• Quality • Reliability • Precision

CLICK FOR PRODUCT MASTER

CONFIDENTIAL For Recipient Only – Not for Distribution, unless approved in advance www.rubycon.com

ubucon					INTE	RNAL O	NLY					-	
-D	Conductive Polymer Aluminum Solid Hybrid Capacitors							Ре	Se	eries	(Pz	-CAI	тм
ARS IIT D	AECQ-200 AUTO HIG Featuring: LON NEV LOAD	MOTIVE GR H VIBRATIO NG LIFE ERSE BATTE DUMP IPPLE OPER	ADE	25-6 33-3 8-10 20-40	CONS: CONS: 30 μFd mm Dia	POWER AUTOMOT INDUSTRIA	pplication	ns: Specific TEMP LIFE (ET BIASET	cations: ERATURE RA NDURANCE)- D HUMIDITY-	IO5°C INGE -5 HRS 10 HRS 2,000	AEC- 5°C to +105° 0,000 @ 105° @ 85/85 (%)	Q200 c c RH/°C)	6NA 330 E
	Rubycon's PeV series conductive polymer (hybrid) capacitors are designed for	Volt [V]	Cap. [µF]	Size φD × L [mm]	ES [m 100 20°C	SR Ω] KHz -40°C	Ripple [mA] 105∘C	Volt [V]	Cap. [µF]	Size φD×L [mm]	E: [m 100 20∘C	SR IΩ] DKHz -40°C	Ripple [mA] 105∘C
	requiring ultra	25	56	6.3 x 6.1	50	75	1300	50	22	6.3 x 6.1	80	120	1100
	miniaturization with high		100	6.3 x 8	30	45	2000		33	6.3 x 8	40	60	1600
	temperature/perfor mance endurance.		220	8 x 10.5	27	41	2300		68	8 x 10.5	30	45	1800
	Designed to operate		330	10 x 10.5	20	30	2500		100	10 x 10.5	28	42	2000
	in extreme environments with	35	47	6.3 x 6.1	60	90	1300	63	10	6.3 x 6.1	120	180	1000
	excellent low		68	6.3 x 8	35	53	2000		22	6.3 x 8	80	120	1500
	characteristics.		150	8 x 10.5	27	41	2300		33	8 x 10.5	40	60	1700
	Double Ripple		270	10 x 10.5	20	30	2500		56	10 x 10.5	30	45	1800
	Current operational testing can be provided upon request. ¹	DESIG	K FOR PROD	RELIABILITY	SINCE 19	52 <u>THE EX</u> I	P <u>ERTS </u> IN CA	APACITOR	s 6.3	SIZE NEI		CAPACI	TORS

CONFIDENTIAL For Recipient Only – Not for Distribution, unless approved in advance www.rubycon.com

h

j

9

Ø

te

Quality • Reliability • Precision

Publicon		NTERNAL ONLY			`		
R	Conductive Polymer Aluminum Solid Hylorid Capacitors			AEC-Q200)	Pz	CAP™
LY <mark>S''</mark> D	GNA		CLICK FOF	R PRODUCT MASTE	R _		
technology	Series	125°C	Rated Voltage [V]	Capacitance [µF]	Size (mm) D x L	E. S.R.[mΩ] /100kHz, 20°C	Rated Ripple Current [mA] /100kHz,125°C ¹
				56	6.3x6.1	50	900
	f			100	6.3x8	30	1400
	eaturing:		25	220	8 x 10.5	27	1600
		ns:		330	10 x 10.5	20	2000
	AUTOMOTIVE GRADE 25-80* VDC	RUBYCO	N 4.4µA	470*	10x12.5	14	2600
	HIGH VIBRATION	HXA:	9.5µA	47	6.3x6.1	60	900
	LONG LIFE			68	6.3x8	35	1400
	62.10 mm DI	٨	35	150	8 x 10.5	27	1600
	REVERSE BATTERY	ESR		270	10 x 10.5	20	2000
	LOAD DUMP 14-120 mΩ	RUBYCON 10.91 ZC 18.7mΩ ¹ Me	mΩ¹ easured	330*	10x12.5	14	2600
	DOUBLE RIPPLE OPERATION ¹			22	6.3x6.1	80	750
	~			33	6.3x8	40	1100
	Rubycon's PEV series conductive	ations:	50	68	8 x 10.5	30	1250
L I I ///	polymer (hybrid) capacitors are designed			100	10 x 10.5	28	1600
P P	for applications requiring ultra	TIVE		150*	10X12.5	22	2000
	temperature/performance endurance.			10	6.3x6.1	120	700
	Designed to operate in extreme INDUSTRIA			22	6.3x8	80	900
	temperature characteristics.	ARS II TM	63	33	8 x 10.5	40	1100
	TEMPERATURE RANGE -55℃ to +125℃	technology		56	10 x 10.5	30	1400
	LIFE (ENDLIBANCE)- HBS 4 000 @ 125°C	65+		68*	10X12.5	24	1800
			80	22*	8x10.5	45	1100
		CAPACITORS	00	39*	10x10.5	35	1200
	CONFIDENTIAL For Recipient Only - Not for Distribution, unless approved in advance WWW.rubycon.com	• Reliab	oilit	y • Pre	cisi o		

R	INTERNAL OF CONDUCTIVE Polymer Aluminum Solid Hybrid Capacitors	ONLY	125°C		P	Z-C/	Р
RS IJ™ D ology	PZ SMD	Ą	NEW	AEC-Q2 TEMPERATU LIFE (ENDURA BIASED HUM	RE RANGE ANCE)- HRS	-55∘C t 4,000 ¢ 2,000 @ 85	o +125°C @ 125°C /85 (%RH/°C)
		Rated Voltage [V]	Capacitance [µF]	Size (mm) D x L PJV	Size (mm) D x L PZJ	E. S.R. [mΩ] 100kHz 20°C	Rated RC [mA] 100kHz 125°C
		25	68 ¹	6.3x6.1	-	50	1080
	25-35 VDC		150 ¹	6.3x8	-	30	1680
	POWER		270	8x10.5	8X9	25	1920
			470	10x10.5	10X9	20	2800
\mathcal{J}	8-10 mm Dia		560²	10x12.5	10X11	14	3200
000	14-25 mΩ	35	56 ¹	6.3x6.1	-	50	1080
			100 ¹	6.3x8	-	30	1680
1			180	8x10.5	8X9	25	1920
			330	10x10.5	10X9	20	2800
			390 ²	10X12.5	10X11	14	3200

Under Development (Tentative Spec) ¹,² SOP/Sample Schedule See Product Master

CLICK FOR PRODUCT MASTER

Rut

techn

Dubusse		NE						
Rubycon	Conductive Polymer Aluminum Solid	OLO Hybrid Capa	GY		Oh	Serie		Z-CAP™
h ARS IIM technology	ARS II 'm eaturing: technology AECQ-200	9	25-63 VDC	Power	ons:	150 AEC	oc ,300 Hours C-Q200	135°C
D D D D D D D D D D D D D D D D D D D	HIGH VIBRATION LONG LIFE	Č	6-10 mm Dia	AUTOMOTIV	/E O	TEMP LIFE (E BIASE	ERATURE RANGE NDURANCE)- HRS D HUMIDITY- HRS	-55°C to +135°C 4,000 @ 135°C 2,000 @ 85/85 (%RH/°C)
	REVERSE BATTERY	Rated Voltage [V]	Capacitance [µF]	Size (mm) D x L	ESR [mΩ] 100kHz 20°C	ESR [mΩ] 100kHz -40°C	Rated Ripple Current [mA] 100kHz 125°C 4,000 Hours	Rated Ripple Current [mA] 100kHz 135°C 4,000 Hours
	DOUBLE RIPPLE OPERATION ³	25	56	6.3x6.1	50		1400	900
	R		100	6.3x8	30		2200	1400
	ubycon's PHV series conductive		220	8 x 10.5	22	33	2900	1600
	polymer (hybrid) capacitors are designed for applications requiring ultra		330	10 x 10.5	20	30	3600	2000
	miniaturization with high		470 ¹	10x12.5	14		2300	4100
	temperature/perjormance endurance.	35	47	6.3x6.1	60		1400	900
(°)	Designed to operate in extreme environments with excellent low		68	6.3x8	35		2200	1400
	temperature characteristics.		150	8 x 10.5	22	33	2900	1600
	Double Ripple Current operational testing		270	10 x 10.5	20	30	3600	2000
	can be provided upon request. 3		330 ¹	10x12.5	14		4100	2300
		50	68²	8x10.5	30		2300	1250
	Under Development (Tentative Spec)		100²	10x10.5	28		2900	1600
	See Product Master	63	33²	8x10.5	40		2100	1100
			56²	10x10.5	30		2600	1400
	CONFIDENTIAL For Recipient Only – Not for Distribution, unless approved in advance www.rubycon.com	CLICK FOR P		liabili	ity •	Preci	sion	

CONFIDENTIAL For Recipient Only – Not for Distribution, unless approved in advance www.rubycon.com

HYBRID POLYMER ROADMAP

125°C

125°C

135°C

150°C

PZF SERIES

PZJ SERIES

PZH SERIES

PFV SERIES

PJV SERIES

PHV SERIES

PLV SERIES

LINK TO DATA SHEETS

CONFIDENTIA unless approved in advance www.rubycon.com

PERFORMANCE THRESHOLD TESTING

PURPOSE: EXTENDED TESTING AT VARIABLE LOAD CONDITIONS TO TEST FOR HIGH RIPPLE CURRENT DURABILITY

• Quality • Reliability • Precision

CONFIDENTIAI

unless approved in advance www.rubycon.com

Rubycon

technology

1: Estimated Tj = Tambient + Estimated Δ Tj = Tambient + $2.3^{}\Delta Tc$ (Ratio $\Delta T i / \Delta T c: 2.3$) = Tambient + 2.3*(Tcase - Tambient) = 120 + 2.3 (125-120)=131.5

Forced Convection Temperature Chamber **TEST RIPPLE/TEMPERATURE/VOLTAGE- CONDITIONS**

PARAMETER	Low ripple	Middle ripple	Н	igh Ripple	
DC Voltage (V)	14	14		14	
Ripple Current (100kHz)	6.5Arms	9Arms		14Arms	
Δ Tcase (K)	5	10		20	
Estimated ΔTj (K)	12	23	46		
Ambient Temp. (∘C)	120	115	105		
Tcase (∘C)	125	125	▲ 125		
Estimated Tj (°C) *1	132	138		151	

Case Temperature Held Constant

CAPACITORS • Quality • Reliability • Precision

CONFIDENTIAL For Recipient Only – Not for Distribution, unless approved in advance WWW.rubycon.com

Rubycon

technology

 HIGH RIPPLE TESTING- 9Amp 4.5x Rated Ripple Current
 ■

unless approved in advance www.rubycon.com

RC (Amps)	Time	Capaci [u	tance F]	ESR (mΩ]	RC (Amos)	Time	Capac (u	itance F]	ESR	[mΩ]	RC (Amos)	Time	Capac [u	itance F]	ESR	(mΩ)
(entrips)	funst	No.1	No.2	No.1	No.2	(entripol)	(111.2)	No.1	No.2	No.1	No.2	(runps)	friest	No.1	No.2	No.1	No.
6.5	0	314.7	314.3	19.0	18.8	9	0	313.9	317.3	20.0	18.9	14	0	319.0	314.6	18.0	18.2
6.5	256	298.6	294.5	18.1	18.3	9	278	292.5	295.0	19.0	18.6	14	163	284.7	284.9	17.4	17.9
6.5	542	291.8	287.0	17.9	18.1	9	540	285.1	286.1	18.6	18.2	14	304	279.4	280.2	18.3	18.4
6.5	967	285.0	279.8	18.0	18.4	9	1019	274.9	278.7	19.2	18.9	14	538	274.4	273.7	19.2	19.6
6.5	1551	277.4	273.6	18.5	19.5	9	1517	269.4	272.3	19.4	19.1	14	746	270.9	269.8	19.5	20.2
6.5	2006	274.4	271.1	18.0	18.9	9	2020	266.2	269.0	20.0	19.6	14	1105	267.9	266.4	19.6	19.9
6.5	2506	271.7	268.5	18.8	19.4	9	2520	264.2	268.2	19.8	19.7	14	1581	264.9	263.2	19.7	20.1
6.5	3073	269.1	266.4	19.1	19.7	9	3000	263.0	266.9	20.2	19.8	14	2084	263.0	261.8	20.4	20.7
6.5	3543	267.3	265.0	19.5	19.6	9	3509	261.8	264.9	20.4	19.9	14	2543	260.0	259.6	20.6	20.9
6.5	4026	266.4	263.9	19.3	19.7	9	4012	261.8	264.2	21.1	20.5	14	3030	260.1	259.0	21.2	21.3
6.5	4510	265.4	263.0	19.4	19.9	9	4519	259.9	262.6	21.1	20.3	14	3514	260.9	257.8	21.4	21.2
6.5	5531	264.0	261.8	19.5	19.9	9	5534	259.6	261.5	21.5	20.5	14	4007	257.4	258.0	23.8	22.4
6.5	6681	263.2	261.1	19.6	20.4	9	6536	258.6	261.5	21.6	20.6	14	4302	0.2	260.2		21.8
6.5	7610	263.0	260.8	20.0	20.3	9	7686	258.1	261.4	22.5	21.5						
6.5	8759	261.5	259.1	20.6	20.8	9	8615	257.9	260.9	22.6	21.6						
6.5	9521	260.9	258.5	20.4	20.6	9	9764	259.7	259.2	21.7	21.7						
6.5	10281	260.9	258.3	20.6	21.1	9	9937	147.4	259.6	57.6	22.2						
6.5	11375	260.4	257.2	20.3	20.9	9	9944		260.2	1	21.8						
6.5	13022	260.1	256.4	20.3	20.4												
6.5	15131	259.2	256.2	20.8	21.3	1											
6.5	17016	258.5	254.9	20.9	21.2												
6.5	19099	257.7	253,8	20.4	21.3												
6.5	20600	257.6	253.9	20.4	21.2												

Conductive Polymer Aluminum Solid Hybrid Capacitors

CONFIDENTIAL For Recipient Only – Not for Distribution, unless approved in advance www.rubycon.com

FAILURE ANALYSIS – TEST REPORT 9/14 AMP LOAD

• Quality • Reliability • Precision

CONFIDENTIA

unless approved in advance NWW.rubvcon.com

TEMPERATURE MEASUREMENT POINTS

TEST REPORT – 14 AMP TEST

Temperature monitoring over ripple current load life test

Ambient

TEMP. MONITORING

• Quality • Reliability • Precision

14A HIGH RIPPLE TEST

Test condition: Ta=120°C Ir=6.5Arms/100kHz

Rubycon

technology

	TEC	HNOL	OGY
Conductive Polymer	Aluminum	Solid Hybrid	Capacitors

ELECTRICAL & XRAY ANALYSIS

HIGH RIPPLE- TEAR DOWN ANALYSIS -14A

Characteristic	No.1	No. 2				
Capacitance (120Hz)	0uF (-100%)	253uF (-19.4%)				
tanδ (120Hz)	2.74	0.026				
ESR (100kHz)	370,716 mΩ	2.9mΩ				
L.C. (14V 1min)	22.2uA	4.0uA				
Comments	Open Mode	Functional				

HIGH RIPPLE- TEAR DOWN ANALYSIS -9A

Characteristic	No.1	No. 2
Capacitance (120Hz)	0uF (-100%)	260.2uF (-18%)
tanδ (120Hz)	3.27	0.033
ESR (100kHz)	303 Ω	21.8mΩ
L.C. (14V 1min)	3.2uA	4.0uA
Comments	Open Mode	Functional

#1

VISUAL DAMAGE

SAFE – OPEN CIRCUIT FAILURE MODE

- POLYMER MATERIALS CONTINUE TO FUNCTION UNDER EXTREME CONDITIONS
- 7X RATED RIPPLE CURRENT APPLIED AND SUSTAINED LIFE FOR OVER 4,000 HOURS (WHICH IS THE GUARANTEED RATING AT LOWER
- ESR IS EXTREMELY STABLE- EVEN UNDER HIGH
- LOW TEMPERATURE PERFORMANCE OUTPERFORMS CONVENTIONAL WET TYPE
- CAPACITANCE STABLE AFTER INITIAL BREAK IN
- EXCELLENT SIZE/PERFORMANCE RATIO -REDUCED SIZE AND IMPROVED VIBRATION
- LIFE LIMITING FACTOR SEEMS TO BE RUBBER

Extended Rubber Seal Testing- Next

RUBBER BUNG TESTING

TEMPERATURES TESTED 105°C, 125°C, 135°C, 150°C, 166°C KEY CHARACTERISTIC CHECKED RUBBER HARDNESS

HIGH TEMPERATURE CAPACITOR SEAL TESTING

Rubycon

technology

CONFIDENTIAL
 For Recipient Only - Not for Distribution,
 unless approved in advance
 www.rubycon.com
 • Quality • Reliability • Precision

www.rubycon.com

Rubycon

technology

LIFE CHART RUBBER BUNG

RUBBER BUNG- TENTATIVE LIFE SPEC 2,000 HRS @ 150°C

HYBRID POLYMER- MANUFACTURING PROCESS CONTROL

ww.rubvcon.cor

Rubycon

technology

Example Conductive Polymer Aluminum Solid Hybrid Capacitors

25 PZH 820 M 10X20 (PZH series 25V 820uF size 10X20)

35 PZH 680 M 10X20 (PZH series 35V 680uF size 10X20)

140

• Quality • Reliability • Precision

PZ-CAP™

50 PFV 33 M 6.3X8

Lifetime 125degC/4000h

	Typical value(100kHz)																	
	Temperature	-50	-40	-30	-20	-10	0	10	20	30	40	50	60	70	80	90	100	125
Reference	ESR (Ohm) beginning of lifetime	0.013	0.013	0.013	0.014	0.014	0.015	0.015	0.016	0.016	0.017	0.017	0.017	0.018	0.018	0.019	0.019	0.021
Reference	ESR (Ohm) end of lifetime	0.016	0.016	0.016	0.017	0.017	0.017	0.018	0.018	0.019	0.019	0.020	0.020	0.021	0.021	0.022	0.022	0.024
	MAX value(100kHz)																	
Reference	Temperature	-50	-40	-30	-20	-10	0	10	20	30	40	50	60	70	80	90	100	125
	ESR (Ohm) beginning of	0.022	0.022	0.024	0.025	0.027	0.029	0.020	0.040	0.044	0.042	0.042	0.044	0.046	0.047	0.049	0.040	0.053
	neume	0.032	0.055	0.034	0.035	0.037	0.030	0.059	0.040	0.041	0.042	0.045	0.044	0.040	0.047	0.040	0.049	0.055
	ESR (Ohm) end of lifetime	0.040	0.040	0.041	0.042	0.042	0.044	0.045	0.046	0.047	0.048	0.050	0.050	0.052	0.054	0.055	0.056	0.061

Quality
Reliability
Precision

25 PHV 330 M THY 10X10.5 Lifetime 125degC/4000h

CONFIDENTIAL For Recipient Only – Not for Distribution, unless approved in advance

www.rubycon.com

	Typical value(100kH	/pical value(100kHz)																	
	Temperature	-50	-40	-30	-20	-10	0	10	20	30	40	50	60	70	80	90	100	125	150
Reference	ESR (Ohm) beginning of lifetime	0.007	0.008	0.008	0.009	0.009	0.009	0.010	0.010	0.011	0.011	0.011	0.012	0.012	0.012	0.013	0.013	0.014	0.015
Reference	ESR (Ohm) end of lifetime	0.009	0.009	0.010	0.010	0.010	0.011	0.011	0.012	0.012	0.013	0.013	0.013	0.014	0.014	0.015	0.015	0.016	0.017
	MAX value(100kHz)																		
	Temperature	-50	-40	-30	-20	-10	0	10	20	30	40	50	60	70	80	90	100	125	150
Reference	ESR (Ohm) beginning of lifetime	0.015	0.015	0.016	0.017	0.018	0.019	0.019	0.020	0.021	0.021	0.022	0.023	0.024	0.024	0.025	0.026	0.028	0.030
Reference	ESR (Ohm) end of lifetime	0.018	0.018	0.019	0.020	0.020	0.021	0.022	0.023	0.024	0.025	0.025	0.026	0.027	0.028	0.029	0.030	0.032	0.034
	Typical value(10kHz) Temperature -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 125														125	150			
Reference	ESR (Ohm) beginning of lifetime	0.011	0.011	0.012	0.012	0.013	0.013	0.013	0.013	0.013	0.013	0.014	0.014	0.015	0.015	0.015	0.016	0.017	0.017
Reference	ESR (Ohm) end of Ifetime	0.014	0.013	0.014	0.014	0.015	0.015	0.015	0.015	0.015	0.015	0.016	0.016	0.017	0.017	0.018	0.018	0.019	0.020
	MAX value(10kHz)																		
	Temperature	-50	-40	-30	-20	-10	0	10	20	30	40	50	60	70	80	90	100	125	150
Reference	ESR (Ohm) beginning of lifetime	0.022	0.022	0.023	0.024	0.025	0.026	0.026	0.026	0.027	0.027	0.028	0.028	0.029	0.030	0.031	0.031	0.033	0.035
Reference	ESR (Ohm) end of lifetime	0.027	0.026	0.028	0.028	0.029	0.029	0.030	0.030	0.031	0.031	0.032	0.033	0.034	0.035	0.035	0.036	0.039	0.040

Quality
Reliability
Precision

